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Abstract

In this paper, we present a new model for composite beams with through-width delaminations. Shear effect and
rotary inertia terms, as well as bending-extension coupling, are taken into account in the governing equations of
vibration. Nonlinear interaction, due piecewise linear spring models between the delaminated sublaminates, is also
included. Based on this model, eigensolutions for vibrations of intact and delaminated beams are found analytically.
Dynamic behavior predicted by this model is then compared with previously reported experimental results. Better
agreements with the experimental results are found. Discrepancies among previously proposed models are explained
without difficulty. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Advanced composite materials are increasingly used in structural designs of aircraft, helicopters, and
spacecraft because of desirable properties like high strength and stiffness, lightweight, fatigue resistance,
and damage tolerance, etc. (Anon, 1992). However, composites are very sensitive to the anomalies
induced during their fabrication or service life. Delaminations are found to be one of the important
failure modes in composite structures (Garg, 1988). The presence of delaminations in a composite
structure affects its integrity as well as its mechanical properties such as stiffness and strength.
Reflections of these effects in dynamic response are the alteration of natural frequencies and damping
ratios. In addition ‘delamination modes’ which are related to the opening of the delaminated region
during the dynamic response will appear in some cases. As a result, considerable analytical, numerical,
and experimental efforts have been expended to capture these phenomena.

One of the earliest models for vibration analysis of composite beams with delaminations was
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proposed by Ramkumar et al. (1979). They modeled a beam with one through-width delamination by
simply using four Timoshenko beams connected at delamination edges. Natural frequencies and mode
shapes were solved by a boundary eigenvalue problem. By using their model, the predicted natural
frequencies were consistently lower than the results reported in experimental measurements. Authors
attributed this discrepancy to the effect of contact between the delaminated ‘free’ surfaces during
vibrations. They suggested that the inclusion of the contact effect may improve the analytical prediction.
Instead of using this suggestion, Wang et al. (1982) improved the analytical solution by including the
coupling between flexural and axial vibrations of the delaminated sublaminates. Using an isotropic beam
with splits and the classical beam model, they found that the calculated natural frequencies were closer
to experimental results. With similar considerations, Nagesh and Hanagud (1990) formulated a finite
element solution for arbitrary composite beams. In the finite element models, they considered the
classical beam model as well as the beam model with high-order shear deformations. Later, Mujumdar
and Suryanarayan (1988) pointed out that some delamination opening mode shapes predicted by Wang
et al. (1982) are physically incompatible. They argued delamination opening modes are mathematically
admissible. However, they believed that the appearance of these modes in a dynamic response is not
feasible because of possible overlap between the delaminated sublaminates. To avoid this kind of
incompatibility and keep a linear model, they imposed a pressure between the delaminated parts, that is,
two delaminated parts were constrained to have the same flexural deformations. This model was called
‘constrained model’ in contrast with the ‘free model’ proposed by Wang et al. (1982). The ‘constrained
model’ assumptions were also used to model simply-supported composite beams (Tracy and Pardoen,
1989) and sandwich beams (Hwu and Hu, 1993). Nevertheless, the constrained model fails to explain the
delamination opening modes found in experiments (Shen and Grady, 1992). In these experiments
conducted by Shen and Grady (1992), opening modes were even found in the first bending mode of the
beam for some delamination cases. However, their finite element formulations (Model A and B) were
essentially followed the ‘constrained model’ by Mujumdar and Suryanarayan (1988) and the ‘free model’
by Wang et al. (1982). The discrepancy between the results predicted by the two models is significant
even in cases where mode shapes do not show any opening in the delamination region. Furthermore, in
some cases, opening delamination modes were shown clearly in their experiment, while the ‘constrained
model’ frequency prediction had a better match with the corresponding experimental results for these
modes, even though the delamination cannot open using the ‘constrained model’. In the experimental
research done by Hanagud and Luo (1994), Luo and Hanagud (1995), they have indicated that the
delamination modes can also be found in combination with higher order modes for structures with
through-width as well as embedded delaminations.

Research on vibrations of a delaminated beam with respect to its buckled state is attributed to Yin
and Jane (1992). They analyzed the vibrations of a clamped—clamped beam with a symmetrically located
delamination and with buckling due to an axial force. The relative amplitude of the vibrations between
sublaminates in the delamination region was assumed to be smaller than the opening under a buckling
state. Thus, there can exist free delamination vibrations without impact between the delaminated
sublaminates. In Chen’s paper (Chen, 1994), he included shear deformation term in his postbuckled
model, while in the prebuckled case, a constrained model was used, i.e., assuming the upper and lower
delamination parts have the same flexural deformations.

To the author’s best knowledge, we do not have an analytical model that can consistently explain the
phenomena observed by experiments. The purpose of this paper is to developed a model which is able
to capture the experimental phenomena without introducing contradictions. In this research, we used a
piecewise-linear spring model to simulate the behavior between delaminated surfaces. Shear and rotary
inertia effects, as well as bending-extension coupling, are included in the governing equations.
Frequencies and mode shapes are solved through a boundary eigenvalue problem. The proposed model
includes the ‘free model’ and the ‘constrained model’ as special cases. In a case where delamination
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opening does not appear in the mode shape, both ‘free model’ and ‘constrained model’ cases converge
to predict the same frequency. The nonlinear response simulated by this model shows good agreement
with the experiment results.

2. Analytical modeling
2.1. Basic assumptions

As shown in Fig. 1, after delamination, a representative composite beam with width b, height H, and
length L can be viewed as a combination of four beams connected at the delamination boundaries x =
Ly and x = L,. In Fig. 1, we denote m;, D;, S; and A4,(i =1, 2, 3, 4) the mass density per unit length,
bending stiffness, cross sectional shear stiffness, and extensional stiffness of four beams, respectively. The
notations H, and Hj represent the distances between the neutral axis of the delaminated beam and the
neutral axis of the intact part. It is worth noting that, for composite materials, H, + H3 is not
necessarily equal to H/2. The geometric center and the neutral axis of a sublaminate, in general, do not
coincide.

The effects between the delaminated surfaces depend on the relative position between the sublaminates
during vibrations. Delaminations in a composite structure usually occur in the matrix between fiber
plies. Here we assume that after delamination, partially intact matrix and fibers still fill the delamination
crack. Some constraints between the upper and lower delamination still exist. Under a small amplitude
vibration of the delaminated beam at a frequency corresponding to a delamination opening mode, the
effect between delaminated sublaminates can be modeled as a distributed soft spring between them.
When the amplitude exceeds a certain level, the spring effect becomes zero because the delamination
opens beyond the small amplitude constraints. On the other hand, when the vibration mode does not
tend to open the delamination, the delaminated sublaminates have the same flexural displacements and
slopes. Thus, the exact behavior of the effects between the delaminated sublaminates may be described
by a nonlinear spring model as shown qualitatively in Fig. 2 by a dashed line.

To simplify the problem while keeping the significant nonlinear features of the vibrations of a
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Fig. 1. Modeling of delamination effects.
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Fig. 2. A piecewise linear spring model.

delaminated beam, we reduced the nonlinear model into a piecewise linear model based on the following
observations:

e When the delamination tends to open in vibrations, that is, the relative displacement w, — w3 is
positive, the distributed contact force is zero. The spring model is represented by the solid line OA in
Fig. 2.

e When the delamination is completely closed during the vibrations, the relative displacement wy — w3 is
a fixed value. Under such a circumstance, the spring model can be simplified by another straight line
BC as shown in Fig. 2.

e When the delamination beam is vibrating in a small amount of relative displacement, for example
—dy < wy — w3 < 0, the spring model can be simplified by a linear spring constant model, as shown in
Fig. 2 by a solid straight line OB. For a given practical problem, the exact value for dy and spring
constant in this region need to be determined by special experiments.

2.2. Equations of motion of delaminated structures

With the above considerations, the governing equations for free vibrations of a delaminated beam can
be written as (under the sign convection for bending moment M and shear force ¥ shown in Fig. 3):

qxt) V(x,t)+ﬁ%t—)dx

BOx.b)
‘aﬁ‘ Wix,t)
Mxt) &
Vixt) x

y:w

Fig. 3. Sign convention in bending.
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for axial vibration, where i denotes the number of beam sections as shown in Fig. 1.
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for flexural vibrations of intact beam segments, and

d 3w,

a(&'ﬁz) — My 4= Fii(x, 1)
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for flexural vibrations of delaminated sublaminates.

In these equations, #; and w; denote the axial and flexural displacements, respectively; f5; is the angle
of the shear at the beam segment neutral axis; y; is the slope of the deflection curve caused by bending
moment; m; is the mass per unit length; J; is the cross sectional mass moment of inertia; ¢; is distributed
lateral load.

The w;, B;, and y; are connected by

owi(x, 1)

T = i )+ i ). @

While ¢;, has the form

qa(x, 1) = k[w3(x, 1) — wa(x, 1)]

q3(x, 1) = k[wa(x, 1) — w3(x, 1)] ®)

where k is the piecewise linear spring constant.
Pi(x, t) is the external axial force, F}; and F»; are generalized external forces. The most general forms
are:

Fii(x, 1) = Qi(x, 1) + »_PANS(x — xy)
k

Foi(x, 1) = Ni(x, 1) + Y _M{0)3(x — xx)
k

where Q;(x, f) is the external distributed force; P;(f) is the external concentrated force at the location x =
Xk Ni(x, 1) is the external distributed moment; M;(¢) is the external concentrated moment at the location
x = x4. Since P;, Fy;, and F,; are independent of the system variables, in the following eigenproblem
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solution procedures, these terms are set to zero. In the dynamic response calculations, there terms can
be included and solved by a nonlinear modal analysis technique.
The mechanical properties of beam segments are formed by

n; ni

/ ¢ Sk
A; _bZQll(zk_Zk 1), Di= 3ZQ11 Zk 1) Si:kb;st(Zk—Z/c—Q

n; n;

mz_bzp(zz_zk 1)s J—3ZP _Zkl

where b is the width of the beam, p is the volume mass density of the lamina, z; and z;_; are the
location of the k-th lamina with respect to the neutral axi% of the z]th beam segment, #; is the number of
plies of the beam, k’ is the shear correction factor, and @, and Q55 are stiffness coefficients of a lamina
in the composite beam direction. The symbols Q, and Qs are further defined as

~k - . - .
0}, = O} cos'd + 0%, sin' +2(0}, + 20k, ) cos’ sin’p

5k k 2 ko2
Qs = 055 cos™¢p + Oy, sin“¢

where ¢ is the angle of k-th lamina orientation with respect to the composite beam coordinates, and Qg.
are lamina stiffness coefficients in the ply coordinates.
Using eqn (4), eqn (2) are reduced to

84w1 my J1 3*w, my 3%w,  Jymy 3%w
8)(?4 Sl ax2 912 D o2 DS, ort

9*wy mp J1\ 9%wy my 9wy | Jimy 3wy ©)
ax4 S ax2 912 D o2 DS ort
Similarly, by using eqn (4), eqns in (3) can be reduced to
34W2 Wl2 J2 3411/2 ny 82Wz J2m2 3414/4
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Note that the ‘free model’ of reference (Wang et al., 1982) corresponds to k = 0 case in eqn (7), while
in the case where delamination is closed, w, — w3 = —d = constant. By substituting w, = w3 — dj, eqns
(7) can be further simplified as
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(7a)

(7b)

It is seen that eqn (7b) is corresponding to the so-called ‘constrained’ model of reference (Mujumdar

and Suryanarayan, 1988).

Assuming free harmonic vibration, ie. let ui(x, 1) = ui(x)e /!, wi(x, 1) = wi(w)e /!,

nondimensionalizing x with x = L, we get

dzu,-
dé?

+92u; =0, i=1,2,3,4

d4 )i dz/’i
%‘" bl—‘;+clvv[:0, i=1,4
dé dé

d4 w d2 w d2 w d2 W
@ thgg tem=denomy <_3 K3

42 d&

d*w d’w
3o 4 c3ws = dy(wy — w3) + e3<

d_é2_ dé,

dwy  dPws
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where

. 2L2
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m; J; Jiw? m;
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()
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(11)

For beams with moderate to high slenderness ratio and low order of delamination opening modes,
—(e;/d;) <« 1, thus, it is reasonable to drop the second term in the right-hand-side of eqns (10) and (11).

From eqn (10), we have
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Substituting (12) and (11) leads to

d? L dowy, L dt APy
w82 i »162 i ‘Zz + s u2 2 ¥ Gawy =0 (13)
dé dé dé dé

where

ay=2Mbr+b3), ab=cr+dr+c3+d;s+4brbs

a3 =2[b3(c2 + ds) + ba(cs + d3) ], da = 203 + ads + c3dy

For a cantilever beam clamped at x = 0 and free x=L, the axial deformation, using the boundary
conditions of uj|s—g = 0, du;/d&|._; = 0, becomes

up = Cy sin (7€)
uy = Cy sin (7,¢) + C3 cos (7,€)
uz = Cy sin (p3¢) + Cs cos (p3¢)

uy = Cg cos [p,(& = 1)] (14)

Solution forms for other boundary conditions can be obtained without any difficulty.
Based on eqn (9), we assume

wi = Cysin (1¢) + Cg cos (41&) + Co sinh (&) + Cyg cosh (&)

wyq = Cqy sin (1) + Cip cos (1) + Ci3 sinh (B,E) + Cia cosh (B€) (15)

where

ol = by +,/b} —c1, i =—bi+./b}—ci

It is easy to verify that the following expressions for iy, and i, satisfy equations of motion:

Y, = —Cqa; cos (o1 &) + Cgity sin (1) + Coff cosh (Bi&) + C1of; sinh (1€)

Y, = —Cho cos (1) + Crpoy sin (o &) + C13, cosh ([315) + C14f3; sinh (ﬁlf) (16)
where
272 272
miw-L miw-L
-3 = —h
o] = 51 By = S
wl 00! gL
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In certain cases of small k/E,,, we can get real and pure imaginary roots from the characteristic
equation of eqn (13). Under such circumstances, we assume solutions for eqns (13) and (12),

wy = Cis sin (28) + Ci cos (a2&) + Ci7 sin (a3¢) + Cig cos (a38)

+ Co sinh (&) + Cyg cosh (&) + Cyy sinh (B3€) + Cxz cosh (B5¢)

w3 = Cisay sin (028) + Cie0 cos (02&) + Ci783 sin (03¢) + Cig03 cos (a3E)

+ C19[}2 sinh (ﬁzf) + Czof}z cosh (ﬁzf) + C21ﬁ3 sinh (ﬁ,zf) + C22/A))3 cosh (ﬁ3f) )
where o, and a3 satisfy
X4+ axt —asx+a, =0
while 3, and f; satisfy
xttaxP +ax? +ax+a =0
and
. (ca+d—2by2 +0o) 4 (CZ +dy —2b7 + ﬁ?) )
= 5 , pi= A , 1=2,3
Similarly, to satisfy eqn (3), we assume
Yy = —Cis502 cos (02&) + Cipa sin (228) — Cr703 cos (23¢) + Cigas sin (43¢)
+ CoP5 cosh (B2E) + CaoP, sinh (Br€) + Cai B3 cosh (B3¢) + CoPs sinh (B3E)
Y3 = —Cis0 cos (228) + Cige sin (02€) — Cr7a3 cos (23¢) + Cigas sin (a3¢)
(18)

+ C1of, cosh (B6) + Ca0P, sinh (B2¢) + Ca1f cosh (B3¢) + CxPs sinh (85¢)

where
myw?L2 kL? . myw?L? kL2 [~
L) 2= g (h-1)
- S> S, S Ss
al - > ﬂl -
L BiL

myw3L? . kIL? . myw2L2 A A kL2 A
3S706i—0<,j20€i+5—(1 —o) 3S ﬁi_ﬁ?ﬁi"’_s—(l _ﬁi)

%= 3 3 B, = 3 3 i=23

oL » B:L ’ ’

Eqns (14)—(18) give general solution forms for a delaminated cantilever beam. Twenty two unknowns,
Ci(i=1,2,...,22), and the frequency parameter, w, are determined by the following boundary

conditions:
Até=0(x=0):
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wr=0¢,=0 (19)
At E=1(x=L):
Yi=0, wy—y,=0 (20)

Até=¢(x = Ly):

Wi= Wz, Wp = Wws, ‘//1 = lﬁza lﬁl = ‘/13

/HZ _ + ,H3
U= uy WIL, uz = uy wlL
Dy = D2y + Daps — Asuy + Azu (21)
Si(wi =)= Sa(ws — ) + S3(w§ — y5)
A]Lll/ = Azué + A3u§
At ¢ = &(x = Ly):
Wa=wy, wa=w3, Yy=1,, V4=
H H
U= Uy — wé’lfz, Uy = ug + WAQTS
(22)

D4W1= DZI//2, + Dﬂﬁé - A2u2, + A3u§
Sa(wy — )= S2(ws — ¥3) + S3(w5 — ¥5)
A4u4= Azuzl + A3u§

Eqns (19)—(22) provide 22 homogeneous equations for 22 unknowns C;(i =1, 2, ..., 22). The existence
of nontrivial solution for C;’s requires the determinant of the coefficient matrix be zero, which forms the
characteristic equation for solving eigenvalues. For each eigenvalue, the corresponding mode shape is
determined by the eigenvector solution of the equations.

3. Examples

An example used were taken from reference by Shen and Grady (1992). Numerical predictions based
on the proposed model were compared with the experimental results in the reference. Delamination
opening modes were predicted by the proposed model. Using a nonlinear modal analysis technique and
the proposed model, nonlinear free vibration response was predicted.

Table 1
Material properties of T300/934
graphite/epoxy prepreg

Ep 19.5 msi
Er 1.5 msi
GLT 0.725 msi
ner 0.33

VTT 0.60

p 1.3821e-4 1b-s>/in*
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3.1. Specimen configuration

Material properties are listed in Table 1. In the reference, the transverse shear modulus is not given,
even though in their finite element model shear effect was taken into consideration. The transverse shear
modulus is usually hard to obtain. In our examples, we assume the composite lamina is transversely
isotropic and the transverse Poisson ratio was selected as vy = 0.6, which is a reasonable guess
according to reference (Zweben et al.,, 1989). Based on Table 1, the principal material stiffness
coefficients are expressed as

S virEr G — Er
TL E TT 72(1 Fvir)
E viLE, E
o :—L’ le:#, Q22:7T
1 —virvro 1 —virvro I —virvro

Qs = Q66 = Grr, QOss = Grr

Examples considered include cantilever composite beams with the eight-ply [0/90], construction and
dimensions of 10 x 0.5 x 0.04’. Thickness direction delamination locations are defined as in Shen and
Grady (1992), i.e., ‘Interface 1’ implies the mid-plane delamination, while ‘Interface 4’ implies the skin
ply delamination and so on. Lengthwise delamination locations are at the middle of beams.
Delamination size includes 0 (intact), 1, 2, 3, and 4 inches.

Based on the model proposed and material properties given in the Table 1, a total of 17 cases
including an intact beam and 16 delaminated beams with different delamination lengths and different
delamination interfaces are calculated. Natural frequencies and mode shapes are compared with the
experimental results provided in Shen and Grady (1992).

3.2. Natural frequencies

Based on the nonlinear model of this paper, for a delaminated beam, conceptually there is no ‘natural
frequency’ as there is for intact beams. In the piecewise-lincar model presented in the previous section,
there are three distinct frequencies at different vibration amplitude levels. These frequencies correspond
to the cases when k — oo, k equals a positive constant, and k equals 0. In Tables 2-5, we have shown
the frequencies predicted by our model at Kk =0, kK = 0.1, k— oo and the averaged frequencies
measured in the experiments by Shen and Grady (1992). In Fig. 4, we have shown two extreme cases,
k = 0 and k — oo, and experimental results for comparison.

From Tables 2—5 and Fig. 4, we can see that frequencies predicted by present model show reasonably
good agreement with the experimental results, especially for the first three delamination interfaces.
According to the present model, kK = 0 and k— oo predict the same frequency in cases where
delaminations are small in length and not located on the neutral plane of the beam. In cases where the
delamination length is large and the delamination thickness direction location is close to the beam
surface, frequencies predicted by k = 0 and k— oo are different. In Fig. 5, we have shown the
delamination size and thickness location effects on first vibration frequencies, where DF is defined as the
ratio of the frequency difference between £ = 0 and k — oo cases with respect to the intact case.

As expected, the significance of the intermediate k (k = 0.1 in the calculation) in the model is small if
the delamination length is small and delamination is located close to the middle in the beam thickness
direction (Tables 2 and 3). In these conditions, the delamination opening modes do not appear. As a
result, the piecewise linear model yields to a ‘constrained model’. However, as shown in Tables 4 and 5,
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Table 2
Interface 1 frequencies (Hz)

Delamination Intact 1 inch 2 inches 3 inches 4 inches
k=0 81.859 81.452 76.807 67.641 56.953
k=0.1 81.859 81.452 76.807 67.641 56.953
k— o0 81.859 81.452 76.807 67.641 56.953
Averaged test 79.833 78.167 75.369 67.959 57.542
Table 3

Interface 2 frequencies (Hz)

Delamination Intact 1 inch 2 inches 3 inches 4 inches
k=0 81.859 80.863 76.621 68.798 59.335
k=0.1 81.859 80.863 76.621 68.798 59.335
k— o0 81.859 80.863 76.621 68.799 59.336
Averaged test 79.833 77.792 75.126 66.958 48.335
Table 4

Interface 3 frequencies (Hz)

Delamination Intact 1 inch 2 inches 3 inches 4 inches
k=20 81.859 82.009 80.740 77.520 71.727
k=0.1 81.859 82.010 80.743 77.541 72.088
k— o0 81.859 82.015 80.785 77.823 73.148
Averaged test 79.833 80.125 79.750 76.958 72.460
Table 5

Interface 4 frequencies (Hz)

Delamination Intact 1 inch 2 inches 3 inches 4 inches
k=0 81.859 82.033 80.867 77.605 69.435
k=0.1 81.859 82.034 80.892 77.719 69.928
k— o0 81.859 82.036 80.945 78.294 74.047
Averaged test 79.875 79.958 68.917 62.500 55.626
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Fig. 4. Delaminated beam frequency predictions.

the significance of intermediate k& becomes important if the delamination modes tend to appear.
Different intermediate k& yield different frequency which falls into the range bonded by the two
frequencies obtained from extreme cases £k = 0 and k — oo.

In Table 5 and Fig. 4, we see big discrepancies between experimental results and numerical results
predicted by the present model for the delamination at Interface 4. This could be an experimental error.
As shown in Fig. 6, the experimental results are even lower than the analytical prediction without
considering the bending—stretching coupling effect, i.e., the bending stiffness in the delaminated region is
simply the summation of the bending rigidities contributed by the delaminated sublaminates. It has been
shown (Ramkumar et al.,, 1979; Wang et al.,, 1982) that without considering bending—stretching
coupling, the analytical predictions should be consistently lower than the experimental results.

DF (%)

o N R

2 Interface

Delamintion
(inches) 3

11

Fig. 5. Influence of the delamination size and location on the first vibration frequencies.
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40}
20l — Predicted using Timoshenko beam
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0

0 1 P 3 4
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Fig. 6. Experimental measurements are lower than predictions without considering the bending—stretching coupling.

3.3. ‘Mode shapes’

The present piecewise-linear model does not predict a unique mode shape as in a linear system, but
the mode shape depend on the value of k& which depends on the vibration amplitude. In Figs. 7-10, we
have shown mode shapes of beams with different delamination location and size at k = 0.

From Figs. 7-10, we can see that first vibration modes do not show any opening in the cases of
Interface 1 and 2 delaminations, while in cases of Interface 3 and 4 delaminations, we can clearly see the
delamination opening modes except for the one inch delamination. By referring to Tables 2-5, it is clear
that for modes where there is no opening in the delamination region, frequencies predicted by k = 0,
k— o0, and k = 0.1 yield the same value or very close to each other. This is reasonable since if there is
no opening in the delamination region, the ‘free model’ and ‘constrained model’ are essentially the same.
However, in Shen and Grady (1992), results predicted by the Model A (corresponding to the
‘constrained model’) and the Model B (corresponding to the ‘free model’) are always different whether
there is a delamination opening or not. Furthermore, for example, in the Interface 3 delamination cases,

Interface 1, 1 inch delamination Interface 1, 2 inch delamination
1.0 1.0
08 0.8
06 0.6
0.4 0.4
0.2 02
] 02 04 06 08 1 X ] 02 04 06 08 1 -
Interface 1, 3 inch delamination Interface 1, 4 inch delamination
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
] 52 o4 o5 o8 1" ] 02z 04 06 08 1"

Fig. 7. Interface 1 mode shapes.
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Interface 2, 1-inch delamination Interface 2, 2-inch delamination
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0.8 0.8
0.6 0.6
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1.0 1.0
0.8 0.8
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x/L x/L
02 04 06 08 1 ] 02 04 06 08 1

Fig. 8. Interface 2 mode shapes.
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Model A, which is a ‘constrained model’, predicted a very close match with the test frequency data,
while the experiments revealed clear delamination openings, especially for large lengths of delaminations.

3.4. Time response

For delaminated beam modes that display a delamination opening, a nonlinear response analysis
becomes necessary to predict response correctly. A nonlinear modal analysis technique was employed for
dynamic response calculations (Luo and Hanagud, 1997). In Fig. 11, we have shown the nonlinear free
response of the beam with Interface 4, 4-inch delamination. In the calculations, we assume, as initial
condition, that the beam is deformed in its first mode shape with kK — oo and then released. During free
vibrations, we also assume mechanical energy in the beam can be transferred from one k value state to
the other without losses, while energy transferred to higher modes is negligibly small. Since the first
frequency at k = 0 is smaller than that at k— oo, under the same deformation, the potential energy
stored in the & = 0 situation is smaller than that in the k — oo. Thus the positive vibration amplitude

Interface 3, 1-inch delamination Interface 3, 2-inch delamination

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
x/L x/L
02 04 06 08 1 [ 02 04 06 08 1
Interface 3, 3-inch delamination Interface 3, 4-inch delamination
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
x/L x/L
02 04 06 08 1 ; 02 04 06 08 1

Fig. 9. Interface 3 mode shapes.
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Interface 4, 1-inch delamination
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Interface 4, 2-inch delamination
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Fig. 10. Interface 4 mode shapes.
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Fig. 11. Free response of delaminated beam at first frequency.
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Fig. 12. The FFT analysis of the delamination response.
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(a) Experimental Result Provided in Shen and Grady (1992)
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Fig. 13. Vibrations of the beam with Interface 3, 3-inch delamination. (a) Experimental result provided in Shen and Grady (1992);
(b) prediction based on the present model.

calculated (see Fig. 11) is larger than the negative vibration amplitude, as expected. The Fast Fourier
Transform analysis (FFT) has also indicated the nonlinearity in the response. In Fig. 12, we have shown
the FFT analysis magnitude. The main peak is neither at the k = 0 resonance nor at the k— oo
resonance, but at somewhere in between. The existence of multiple peaks clearly indicates the
superharmonic phenomena, which is a typical nonlinear effect.

By using the model presented in this paper, we are able to capture the experimentally revealed
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delamination openings. For example, in Interface 3, 3-inch delamination case given in the reference by
Shen and Grady (1992), it was shown that the frequency prediction based on model A had a very close
match with the experimental data. Since model A was actually a ‘constrained model’, delamination
openings could not be predicted. Fig. 13(a) is a comparison of the analytical and experimental results
provided in reference by Shen and Grady (1992). In Fig. 13(b), we have shown the nonlinear response
prediction based on the present model. It is clearly seen that a cycle of vibration includes delamination
opening and closing.

4. Conclusions

In this paper, an analytical model for composite beams with through-width delaminations is
presented. The model includes the rotary inertia and transverse shear effects as well as bending-extension
effect in analysis. The effects between delaminated sublaminates are simplified as a piecewise-linear
model. Previously proposed ‘free model’ and ‘constrained model” are unified in the present model in two
aspects:

1. When the delamination length is small and is located close to the geometric mid-plane, there is no
significant delamination opening in the first mode and the nonlinear model approaches a linear
model. Both ‘free model’ and ‘constrained model” predict the same or nearly the same frequencies.

2. When the delamination is large and close to the beam surface, a delamination opening exists in
vibrations. Nonlinear effects must be taken into consideration. A cycle of vibration response is a
combination of the vibrations from both the ‘free model’ and the ‘constrained model’.

Based on the piecewise-linear model, predicted frequencies show good agreement with experimental
measurements. Mode shape predictions also reflect the experimental phenomena. Based on a nonlinear
modal analysis technique, the proposed model is able to predict the nonlinear dynamic response.

This model provides a better understanding of a delaminated beam, which will, in turn, help to
develop new delamination detection schemes based on structural dynamic response.
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